



October 8-11, 2024 Rome, Italy

30th SolarPACES Conference

#### Technoeconomic Analysis of a Solar Thermochemical Fuel Production Process using a Packed-Bed Redox Reactor

Alon Lidor, Zachary Hart, Janna Martinek National Renewable Energy Laboratory Oct 10, 2024

### Background

• Liquid fuels are critical in many sectors due to high specific energy ( $12-13 \frac{kWh}{kg}$ ,  $9-11\frac{kWh}{L}$ ), ease of storage/transport, wide infrastructure, and ability to produce

high-temperature heat



D. DeSantis, B. D. James, C. Houchins, G. Saur, and M. Lyubovsky, "Cost of long-distance energy transmission by different carriers," *iScience*, vol. 24, no. 12, p. 103495, Dec. 2021, doi: [10.1016/j.isci.2021.103495](https://doi.org/10.1016/j.isci.2021.103495).

# Background

- Liquid fuels are critical in many sectors due to high specific energy ( $12-13 \frac{kWh}{kg}$ ,  $9-11\frac{kWh}{L}$ ), ease of storage/transport, wide infrastructure, and ability to produce high-temperature heat
- Thermochemical fuel production via the 2-step redox cycle using  $CO<sub>2</sub>$  and H<sub>2</sub>O as the feedstock can produce sustainable syngas:

Reduction:  $\frac{1}{\Delta \delta} MO_{X-\delta_{OX}} \rightarrow \frac{1}{\Delta \delta} MO_{X-\delta_{red}} + \frac{1}{2}$  $0_2$  (*T* > 1500°C, Δ<sub>r</sub> $H_{\text{red}}$  > max(Δ<sub>r</sub> $H_{\text{WT}}$ , Δ<sub>r</sub> $H_{\text{CDT}}$ ), low  $p_{0_2}$ ) Oxidation:  $\frac{1}{\Delta \delta} MO_{x-\delta_{\text{red}}} + \frac{1}{2} CO_2 \rightarrow \frac{1}{\Delta \delta} MO_{x-\delta_{\text{ox}}} + CO$  (*T* < 1000°C,  $\Delta_r H_{\text{ox}} = \Delta_r H_{\text{red}} - \Delta_r H_{\text{CDT}}$  < 0)  $\frac{1}{\Delta \delta}$ MO<sub>x- $\delta_{\text{red}} + \frac{1}{2}H_2O \rightarrow \frac{1}{\Delta \delta}$ MO<sub>x- $\delta_{\text{ox}} + H_2$  (*T* < 1000<sup>°</sup>C,  $\Delta_{\text{r}}H_{\text{ox}} = \Delta_{\text{r}}H_{\text{red}} - \Delta_{\text{r}}H_{\text{WT}}$  < 0)</sub></sub>

- Syngas can be converted into liquid fuels via Fischer-Tropsch or MeOH synthesis
- CST is proposed as the thermal driving force (high fluxes, high temperatures)

• State-of-art:  $\eta_{\text{reactor}} = 4.1\%$  (cosplitting) or  $5.6\%$  (CO<sub>2</sub> splitting) 50 kW<sub>th</sub> solar input reactor



Zoller, S., et al., "A solar tower fuel plant for the thermochemical production of kerosene from H<sub>2</sub>O and CO<sub>2</sub>", *Joule*, Vol. 6, pp. 1606-1616, 2022.

- State-of-art:  $\eta_{\text{reactor}} = 4.1\%$  (cosplitting) or  $5.6\%$  (CO<sub>2</sub> splitting)
- Low conversion in the syngas production step – high energy penalty



Condensing at  $T = 100$ °C,  $p = 1$  bar PSA data from Capstick et al. (2023)

- State-of-art:  $\eta_{\text{reactor}} = 4.1\%$  (cosplitting) or  $5.6\%$  (CO<sub>2</sub> splitting)
- Low conversion in the syngas production step – high energy penalty
- Low power output density  $\rightarrow$  large oxide mass and reactor volume



- State-of-art:  $\eta_{\text{reactor}} = 4.1\%$  (cosplitting) or  $5.6\%$  (CO<sub>2</sub> splitting)
- Low conversion in the syngas production step – high energy penalty
- Low power output density  $\rightarrow$  large oxide mass and reactor volume
- Challenges with moving oxide systems







Diver et al., *ASME 4th International Conference on Energy Sustainability,* 2010

- State-of-art:  $\eta_{\text{reactor}} = 4.1\%$  (cosplitting) or  $5.6\%$  (CO<sub>2</sub> splitting)
- Low conversion in the syngas production step – high energy penalty
- Low power output density  $\rightarrow$  large oxide mass and reactor volume
- Challenges with moving oxide systems
- Conflicting requirements for high-T solar receivers and chemical reactors



# The Proposed Solar Fuel Plant Approach

- Decoupling the solar receiver and reactor
- Packed bed reactor design
- Combining CST+PV
- Adding thermal energy storage (TES)
- Separating the  $CO<sub>2</sub>$ and  $H_2O$  splitting reactors



Credit: NREL (Alfred Hicks)

# Redox Subsystem – CO<sub>2</sub> splitting

#### **Four configurations:**

- 1. CST
- 2. CST+PV
- 3. CST+PV+Electric **Heaters**
- 4. CST+TES

#### CO-CO<sub>2</sub> separation:

- Pressure swing adsorption (PSA)
- Membrane separation\*
- Amine scrubbing\*
- \* Not implemented yet



(for simplicity, TES charging mode not shown)

# Redox Subsystem  $- H$ <sub>2</sub>O splitting

#### **Four configurations:**

- 1. CST
- 2. CST+PV
- 3. CST+PV+Electric **Heaters**
- 4. CST+TES

#### H<sub>2</sub>-H<sub>2</sub>O separation:

- Condenser + boiler
- Mechanical vapor recompression\*
- High-T membrane\*



(for simplicity, TES charging mode not shown)

\* Not implemented yet

# Our Approach – Countercurrent Stationary System

Indirectly-heated counter-current chemical regenerator:

- **High conversion**
- No moving parts (fixed bed design)
- Flexible heating method (CST, hybrid, etc.)
- Modular design





RWGS: Bulfin et al. (2023) Netcalfe et al. (2019)

# Our Approach – Countercurrent Stationary System

- Using the same countercurrent concept for thermal reduction
- Temperature-swing, sweep gas operated reactors
- Isothermal redox steps  $(T_{\text{red}})$ and  $T_{\rm ox}$  held constant respectively)
- Splitting  $CO<sub>2</sub>$  and H<sub>2</sub>O in separate reactors



# Redox Reactors Model

#### Reactor:

- 1D convection-diffusion with multiple species (reactant, product,  $O_2$ )
- Pressure gradients calculated using the Ergun equation
- Providing the endothermic reduction heat, extracting exothermic oxidation heat
- Splitting  $CO<sub>2</sub>$  and H<sub>2</sub>O in separate reactors
- Calculating number of reactors needed to obtain continuous syngas production Auxiliary units:
- Sweep gas purification: PSA, cryogenic separation, thermochemical O<sub>2</sub> separation
- H2-H2O separation: **condensation**, **mechanical vapor recompression\***, **electrochemical membrane separation\***
- CO-CO<sub>2</sub> separation: membrane separation, PSA, scrubbing, syngas conditioning

## System and TEA Model

- Four configurations: CST, CST+PV, CST+PV+Electric heaters, CST+TES
- System can operate at full or part load
- Fischer-Tropsch solved using model reaction assuming full conversion [1]
- Brayton power cycle utilizing oxidation heat for power generation
- TEA methodology based on "NETL Guidelines for Energy Systems" [2]
- CST subsystem designed with SolarPILOT [3] (assuming radiative, convective, and piping losses)
- Cost functions: solar components (CST, PV) from [NREL ATB](https://atb.nrel.gov/) [4], chemical plant [5-7]

<sup>[1]</sup> A. de Klerk, *Fischer‐Tropsch Refining*. Wiley, 2011. doi: [10.1002/9783527635603](https://doi.org/10.1002/9783527635603).

<sup>[2]</sup> J. Theis, "Quality Guidelines for Energy Systems Studies: Cost Estimation Methodology for NETL Assessments of Power Plant Performance," National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States), NETL-PUB-22580, Feb. 2021. doi: [10.2172/1567736](https://doi.org/10.2172/1567736).

<sup>[3]</sup> M. J. Wagner and T. Wendelin, "SolarPILOT: A power tower solar field layout and characterization tool," *Solar Energy*, vol. 171, pp. 185–196, Sep. 2018, doi: [10.1016/j.solener.2018.06.063](https://doi.org/10.1016/j.solener.2018.06.063).

<sup>[4]</sup> B. Mirletz et al., "Annual Technology Baseline: The 2024 Electricity Update," National Renewable Energy Laboratory (NREL), Golden, CO (United States), NREL/PR-7A40-89960, Jul. 2024. Available: <https://www.osti.gov/biblio/2425927>

<sup>[5]</sup> B. T. Gorman, M. Lanzarini-Lopes, N. G. Johnson, J. E. Miller, and E. B. Stechel, "Techno-Economic Analysis of a Concentrating Solar Power Plant Using Redox-Active Metal Oxides as Heat Transfer Fluid and Storage Media," *Front. Energy Res.*, vol. 9, Dec. 2021, doi: [10.3389/fenrg.2021.734288.](https://doi.org/10.3389/fenrg.2021.734288)

<sup>[6]</sup> E. Lewis *et al.*, "Comparison of Commercial, State-of-the-Art, Fossil-Based Hydrogen Production Technologies," National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States), DOE/NETL-2022/3241, Apr. 2022. doi: [10.2172/1862910.](https://doi.org/10.2172/1862910)

<sup>[7]</sup> G. Towler and R. Sinnott, *Chemical Engineering Design*, 3rd ed. Elsevier, 2022. doi: [10.1016/C2019-0-02025-0.](https://doi.org/10.1016/C2019-0-02025-0)

#### Results

### Base Case Parameters (1)



### Base Case Parameters (2)



#### Results – Annual Simulation

50 100 150 200 250 300 350 Days 0 5 10 15 20 Time (hr) 0 0.2 0.4 0.6 0.8 1 Plant Load Fraction

TES allows for high capacity factors



**CST** 

#### Results – Annual Simulation



CST+PV without electrical heaters has the lowest capacity factor

#### Results – Total Costs

"SOA" Receiver "Next-Gen" Receiver



Chemical plant cost doesn't include separation and power block – when summed together, this is the largest CAPEX item (excluding TES)

#### Results – Receiver Power

#### "SOA" Receiver "Next-Gen" Receiver



CST+TES affected by different scaling law for TES (optimal  $\frac{C_{\text{TES}}}{P_{\text{reco}}}\approx 8.5-19$ )  $P$ receiver

#### Results – Solid Heat Recovery

#### "SOA" Receiver "Next-Gen" Receiver



### Results – Annual Capacity Factor (CST-TES)

#### "SOA" Receiver "Next-Gen" Receiver



- High-performance receiver effect outweighs CST+TES benefits
- Sensitivity analysis of CST cost scaling power needed to better understand CST-TES cost relations

#### Results – TES Cost (CST-TES)

#### "SOA" Receiver "Next-Gen" Receiver



TES cost<\$10/kWh needed to provide economical value

#### Results – Feedstock Price



CO<sub>2</sub> price affects production costs more than  $H_2O$ 

## Summary

- TEA modeling framework coupled with physics-based system performance
- Levelized cost of fuel <\$9/gal (excluding incentives)
- TES improves fuel cost with "SOA" receiver
- High SM needed (~10) to utilize TES, annual CF>0.85 possible
- CST and PV results in the highest cost without energy conversion (generation mismatch)

#### **Future work:**

- Adding start-up/shutdown effects
- Including additional technology options for auxiliaries
- Sensitivity analysis for CST cost function
- Refining cost models
- More detailed TES performance modeling

#### References for Model Assumptions, Values, and Calculation Methods

[1] A. de Klerk, *Fischer‐Tropsch Refining*. Wiley, 2011. doi: [10.1002/9783527635603](https://doi.org/10.1002/9783527635603).

[2] J. Theis, "Quality Guidelines for Energy Systems Studies: Cost Estimation Methodology for NETL Assessments of Power Plant Performance," National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States), NETL-PUB-22580, Feb. 2021. doi: [10.2172/1567736](https://doi.org/10.2172/1567736).

[3] M. J. Wagner and T. Wendelin, "SolarPILOT: A power tower solar field layout and characterization tool," *Solar Energy*, vol. 171, pp. 185–196, Sep. 2018, doi:

#### [10.1016/j.solener.2018.06.063.](https://doi.org/10.1016/j.solener.2018.06.063)

[4] B. Mirletz et al., "Annual Technology Baseline: The 2024 Electricity Update," National Renewable Energy Laboratory (NREL), Golden, CO (United States), NREL/PR-7A40-89960, Jul. 2024. Available:<https://www.osti.gov/biblio/2425927>

[5] B. T. Gorman, M. Lanzarini-Lopes, N. G. Johnson, J. E. Miller, and E. B. Stechel, "Techno-Economic Analysis of a Concentrating Solar Power Plant Using Redox-Active Metal Oxides as Heat Transfer Fluid and Storage Media," *Front. Energy Res.*, vol. 9, Dec. 2021, doi: [10.3389/fenrg.2021.734288](https://doi.org/10.3389/fenrg.2021.734288).

[6] E. Lewis *et al.*, "Comparison of Commercial, State-of-the-Art, Fossil-Based Hydrogen Production Technologies," National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States), DOE/NETL-2022/3241, Apr. 2022. doi: [10.2172/1862910.](https://doi.org/10.2172/1862910)

[7] G. Towler and R. Sinnott, *Chemical Engineering Design*, 3rd ed. Elsevier, 2022. doi: [10.1016/C2019-0-02025-0.](https://doi.org/10.1016/C2019-0-02025-0)

[8] A. Lidor and B. Bulfin, "A critical perspective and analysis of two-step thermochemical fuel production cycles," *Solar Compass*, p. 100077, Jun. 2024, doi:

[10.1016/j.solcom.2024.100077](https://doi.org/10.1016/j.solcom.2024.100077).

[9] A. Lidor, Y. Aschwanden, J. Häseli, P. Reckinger, P. Haueter, and A. Steinfeld, "High-temperature heat recovery from a solar reactor for the thermochemical redox splitting of H2O and CO2," *Applied Energy*, vol. 329, p. 120211, Jan. 2023, doi: [10.1016/j.apenergy.2022.120211](https://doi.org/10.1016/j.apenergy.2022.120211).

[10] H. W. Häring, *Industrial Gases Processing*. Wiley-VCH, 2008. doi: [10.1002/9783527621248.](https://doi.org/10.1002/9783527621248)

[11] K. Z. House, A. C. Baclig, M. Ranjan, E. A. van Nierop, J. Wilcox, and H. J. Herzog, "Economic and energetic analysis of capturing CO2 from ambient air," *Proceedings of the National Academy of Sciences*, vol. 108, no. 51, pp. 20428–20433, Dec. 2011, doi: [10.1073/pnas.1012253108](https://doi.org/10.1073/pnas.1012253108).

[12] Thermal Energy Technology Review (internal report at NREL), 2024

### Solar-driven Chemical Looping RWGS Regenerative Reactor for Syngas Production (REGENLOOP)

#### **New DOE SETO award**

MNRE

**Transforming ENERGY** 

CREATE NEW

- RWGS system with high energy and  $CO<sub>2</sub>$  conversion efficiencies
- CST-compatible reactor for Gen3 CST temperature range
- Simple, scalable, and cost-effective design for indirect operation

**LYDIAN** 

University College Cork, Ireland

Coláiste na hOllscoile Corcaigh

• Evaluate commercial viability



#### **Acknowledgements:**

Zachary Hart Janna Martinek Craig Turchi

# Thank you for you attention!

#### **www.nrel.gov**

NREL/PR-5700-91794

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell Technologies Office, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.



## The Model

• 1D convection-diffusion with multiple species (reactant, product,  $O_2$ )

$$
\varepsilon \frac{\partial C_{\rm i}}{\partial t} = D_{\rm eff} \frac{\partial^2 C_{\rm i}}{\partial x^2} - u \frac{\partial C_{\rm i}}{\partial x} + C_{\rm oxide} \frac{d\delta}{dt}
$$

Reduction:

$$
\frac{d\delta}{dt} = k_0 \big( \delta_{\text{eq}} \big( T_{\text{red}}, c_{\text{o}_2}, \delta \big) - \delta \big) H \big( \delta_{\text{eq}} \big( T_{\text{red}}, c_{\text{o}_2}, \delta \big) - \delta \big)
$$

Oxidation:

$$
\frac{d\delta}{dt} = -k_0 \big( \delta_{\text{eq}} \big( T_{\text{red}}, c_{\text{o}_2}, \delta \big) - \delta \big) H \big( \delta - \delta_{\text{eq}} \big( T_{\text{red}}, c_{\text{o}_2}, \delta \big) \big)
$$

### The TEA Model

- Levelized cost of fuel:  $LCOP =$  $FCR \cdot TCC + FOC - REV$  $m_{\rm fuel}$  $+$  VOC  $+$  LCOE<sub>PV</sub>  $P_{PV}$  $m_{\rm fuel}$  $+$  LCOH $_{\rm{CST}}$  $P_{\text{CST}}$  $m_{\rm fuel}$
- TCC total capital cost of chemical plant (equal to TASC total as-spent cost) accounting for financing over a period (as opposed to overnight cost):

$$
TCC = \frac{TASC}{TOC} TOC
$$

- REV revenues (from selling  $O_2$ ); FOC fixed operating costs; VOC variable operating costs
- TOC total overnight cost (includes capital costs of all components and extras)  $\bm{M}$

$$
TOC = \sum_{j=1}^{M} C_{e,j} [(1+f_p)f_m + (f_{er} + f_{el} + f_i + f_c + f_s + f_l)]
$$

#### Cycle Process - Reduction



Reduction enthalpy provided indirectly using HTF and/or excess sweep gas heating (high  $h$ )

#### Cycle Process - Cooling



Cooling is performed via the HTF tubes, directly through the reactor (inert HTF), or a combination Heat could be stored or used for power/heat

### Cycle Process - Cooling



#### Cycle Process - Oxidation



Extracting the exothermic heat is performed via the HTF tubes, by flowing reactant at  $T < T_{\text{ox}}$ , or a combination

#### Cycle Process - Heating



Heating is performed via the HTF tubes, directly through the reactor (using HTF), or a combination Depending on heating rates, reduction could be started during heating

## Cycle Process - Heating



# Alternative H<sub>2</sub>-H<sub>2</sub>O Separation

#### **Mechanical Vapor Recompression (MVR)**

- Method used to recover low-grade waste steam in plants
- Compressing the vapor -> creating  $\Delta T$  between streams -> simultaneous evaporation and condensing



# The Model

#### Reactor:

- 1D convection-diffusion with multiple species (reactant, product,  $O_2$ )
- Temperature-swing, sweep gas operated reactors
- Isothermal redox steps  $(T_{\text{red}})$  and  $T_{\text{ox}}$  held constant respectively)
- Splitting  $CO<sub>2</sub>$  and H<sub>2</sub>O in separate reactors
- Calculating number of reactors needed to obtain continuous syngas production Auxiliary units:
- Sweep gas purification: **PSA, cryogenic separation**, thermochemical O<sub>2</sub> separation
- H<sub>2</sub>-H<sub>2</sub>O separation: **condensation**, **mechanical vapor recompression**, **electrochemical membrane separation**
- CO-CO<sub>2</sub> separation: membrane separation, PSA, scrubbing, syngas conditioning

Software: MATLAB, Cantera, CoolProp, COMSOL

### Performance Indicators

• Reactor efficiency

$$
\eta = \frac{\Sigma_{\text{i} = \text{product}} n_{\text{i}} H H V_{\text{i}}}{Q_{\text{sens}} + Q_{\text{red}} + W_{\text{pump}} + W_{\text{inert}}}
$$

• Conversion extent

$$
X = 1 - \frac{n_{\text{ox,out}}}{n_{\text{ox,in}}}
$$

• Power output

$$
P = \frac{\sum_{i=product} n_i HHV_i}{t_{cycle}}
$$

• Power density / specific power

$$
\frac{P}{V_{\rm PB}}
$$
 or 
$$
\frac{P}{m_{\rm oxide}}
$$

#### Results – Temperature Effects

**H<sub>2</sub>O** splitting **CO**<sub>2</sub> splitting  $0.25$  $0.25$  $-$ X<sub>1700°C</sub>  $\frac{X_{1700^{\circ}C}}{X_{1700^{\circ}C}}$  $+22$ 25  $- X_{1600^{\circ}C}$  $- x_{1600^{\circ}C}$ 0.9 20  $X_{1500^{\circ}C}$  $- X_{1500^{\circ}C}$  $\cdots \cdots \eta_{1700^{\circ}C}$  $\cdots \cdots \eta_{1700^{\circ}C}$ 0.8 18  $\cdots \cdots \eta_{1600^{\circ}C}$  $\cdots \cdots \eta_{1600^{\circ}C}$ 20  $\cdots$   $\eta_{1500^{\circ}C}$  $\cdots \cdots \eta_{1500^{\circ}C}$ 16  $-P_{1700^{\circ}C}$  $-P_{1700^{\circ}C}$  $0.2$  $0.2$ \*\*\*\*\*\*\*\*\*\*\*\*\*  $=$  $\frac{P_{1600^{\circ}C}}{P_{1600^{\circ}C}}$ ರ ಸ<br>r Output, [kW]  $=$   $P_{1600^{\circ}C}$  $\frac{1}{2}$ <br>Output,  $\left[\text{kW}\right]$  $\Xi$ <sup>0.1</sup>  $-P_{1500^{\circ}C}^{1600^{\circ}C}$ Conversion,  $[-]$  $-P_{1500\degree\text{C}}$ Efficiency, [-] Efficiency, [-] Conversion,  $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ 10 .......................... 10  $0.15$ 0.15 0.3  $0.3$  $0.2$  $0.2$ 5  $0.1$  $0.1$  $\Omega$  $0.1$ 550 600 650 700 750 800 850 550 600 650 700 750 800 850 Oxidation Temperature, [°C] Oxidation Temperature, [°C]

- Clear trade-offs between efficiency and conversion/power output
- Optimal  $T_{\text{ox}}$  for different  $T_{\text{red}}$
- $\eta > 0.2$  with  $X > 0.2$  at  $T_{\text{red}} = 1600 \degree \text{C}$  (without any solid sensible heat recovery)