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Background

e Liquid fuels are critical in many sectors due to high specific energy (12 — 13

kWh . -
9-11 T)’ ease of storage/transport, wide infrastructure, and ability to produce
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Background

* Liquid fuels are critical in many sectors due to high specific energy (12 — 13 KWh

kg ’
kWh . -
9-11 T)’ ease of storage/transport, wide infrastructure, and ability to produce

high-temperature heat
* Thermochemical fuel production via the 2-step redox cycle using CO, and H,0 as the

feedstock can produce sustainable syngas:

Reduction: =—MOy_5, = 7-MOy_s,., +0; (T > 1500°C, ApHyeq > max(A Hyr, AHepr), low po,)

red

Oxidation: —=MOy_s, . +5C0; > ==MOyx_5 +CO (T <1000°C, AHoy = AHyeq — AcHepr < 0)

=MOy_s,., +5H;0 > =MOy_5 +H; (T <1000°C, AiHoy = AHyeq — AcHyr < 0)

e Syngas can be converted into liquid fuels via Fischer-Tropsch or MeOH synthesis
e (ST is proposed as the thermal driving force (high fluxes, high temperatures)
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Motivation — Challenges in Solar Thermochemical

Fuel Production

e State-of-art: Nyeactor = 4.1% (co-
splitting) or 5.6% (CO, splitting)

Zoller, S., et al., “A solar tower fuel plant for the thermochemical production of
kerosene from H,0 and CO,”, Joule, Vol. 6, pp. 1606-1616, 2022.
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Motivation — Challenges in Solar Thermochemical

Fuel Production

10° ¢

e State-of-art: Nyeactor = 4.1% (co-
splitting) or 5.6% (CO, splitting)
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* Low conversion in the syngas
production step — high energy penalty
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Motivation — Challenges in Solar Thermochemical

Fuel Production

e State-of-art: Nyeactor = 4.1% (co-
splitting) or 5.6% (CO, splitting)
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Motivation — Challenges in Solar Thermochemical

Fuel Production

e State-of-art: Nyeactor = 4.1% (co-
splitting) or 5.6% (CO, splitting)

B: Receiver-reactor
(reduction)

Qsolar

AL
P72 P4 EA B2
[ 2 D: Reactor
(oxidation) | g
yngas
5] ) [

* Low conversion in the syngas '

production step — high energy penalty
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e |Low power output density - |arge Siegrist et al., Journal of Solar Energy Engineering, 2019
oxide mass and reactor volume

e Challenges with moving oxide systems
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Motivation — Challenges in Solar Thermochemical

Fuel Production

State-of-art: Nreactor = 4.1% (co-
splitting) or 5.6% (CO, splitting)

Low conversion in the syngas
production step — high energy penalty

Low power output density - large
oxide mass and reactor volume

Challenges with moving oxide systems

Conflicting requirements for high-T
solar receivers and chemical reactors

Feed

Levenspiel (1999)

Ackermann et al. (2020)

Product

NREL | 8



The Proposed Solar Fuel Plant Approach

Decoupling the
solar receiver and
reactor

Packed bed reactor
design

Combining CST+PV
Adding thermal
energy storage
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Redox Subsystem — CO, splitting

Four configurations:
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Redox Subsystem — H, 0 splitting

Four configurations:
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Our Approach — Countercurrent Stationary System

Indirectly-heated counter-current chemical O D ssasassne @0 | g gasssassanges
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Our Approach — Countercurrent Stationary System

(1) Reduction CO+CO>/ (2) Oxidation
* Using the same countercurrent Hy+H,0

8o Bred N>+0, 8red=> Sox
concept for thermal reduction %_{ )_u;% %4_—4_%

* Temperature-swing, sweep gas b CO,/H;0
operated reactors v S -

* Isothermal redox steps (Tyeq
and T,x held constant
respectively)

* Splitting CO, and H,0 in
separate reactors
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Redox Reactors Model

Reactor:

* 1D convection-diffusion with multiple species (reactant, product, O,)

* Pressure gradients calculated using the Ergun equation

* Providing the endothermic reduction heat, extracting exothermic oxidation heat

* Splitting CO, and H,0 in separate reactors

e Calculating number of reactors needed to obtain continuous syngas production

Auxiliary units:

* Sweep gas purification: PSA, cryogenic separation, thermochemical O, separation

* H,-H,O separation: condensation, mechanical vapor recompression*,
electrochemical membrane separation*

* CO-CO, separation: membrane separation, PSA, scrubbing, syngas conditioning
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System and TEA Model

* Four configurations: CST, CST+PV, CST+PV+Electric heaters, CST+TES

e System can operate at full or part load

* Fischer-Tropsch solved using model reaction assuming full conversion [1]
* Brayton power cycle utilizing oxidation heat for power generation

* TEA methodology based on “NETL Guidelines for Energy Systems” [2]

e CST subsystem designed with SolarPILOT [3] (assuming radiative, convective, and
piping losses)
* Cost functions: solar components (CST, PV) from NREL ATB [4], chemical plant [5-7]

[1] A. de Klerk, Fischer-Tropsch Refining. Wiley, 2011. doi: 10.1002/9783527635603.

[2] J. Theis, “Quality Guidelines for Energy Systems Studies: Cost Estimation Methodology for NETL Assessments of Power Plant Performance,” National Energy Technology Laboratory (NETL), Pittsburgh, PA,
Morgantown, WV, and Albany, OR (United States), NETL-PUB-22580, Feb. 2021. doi: 10.2172/1567736.

[3] M. J. Wagner and T. Wendelin, “SolarPILOT: A power tower solar field layout and characterization tool,” Solar Energy, vol. 171, pp. 185-196, Sep. 2018, doi: 10.1016/j.solener.2018.06.063.

[4] B. Mirletz et al., “Annual Technology Baseline: The 2024 Electricity Update,” National Renewable Energy Laboratory (NREL), Golden, CO (United States), NREL/PR-7A40-89960, Jul. 2024. Available:
https://www.osti.gov/biblio/2425927

[5] B. T. Gorman, M. Lanzarini-Lopes, N. G. Johnson, J. E. Miller, and E. B. Stechel, “Techno-Economic Analysis of a Concentrating Solar Power Plant Using Redox-Active Metal Oxides as Heat Transfer Fluid and

Storage Media,” Front. Energy Res., vol. 9, Dec. 2021, doi: 10.3389/fenrg.2021.734288.

[6] E. Lewis et al., “Comparison of Commercial, State-of-the-Art, Fossil-Based Hydrogen Production Technologies,” National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR
(United States), DOE/NETL-2022/3241, Apr. 2022. doi: 10.2172/1862910. NREL | 15
[7] G. Towler and R. Sinnott, Chemical Engineering Design, 3rd ed. Elsevier, 2022. doi: 10.1016/C2019-0-02025-0.
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Base Case Parameters (1)

—mm-

Redox Packed bed void fraction, &

reactors Redox material CeOz

Reduction temperature, Tyeq 1600 °C
Reduction pressure, Pred 1 bar
Oxidation temperature, Ty 650 °C
Oxidation pressure, pyx 1 bar
Sweep gas purity, Xo, in 107>

Solid heat recovery effectiveness, egr 0.5 [8-9]
Exothermic heat recovery effectiveness, €q 0.85

Gas-gas heat recovery effectiveness, &go 0.85

Reduction time, tyeq 150

Oxidation time, t,x t(X = O.5Xeq)
Fischer-Tropsch temperature, Tgt 200 °C [1]
Fischer-Tropsch pressure, pgr 10 bar [1]
Fischer-Tropsch conversion, Xgt 1

Syngas composition H,:CO 2:1 [1]
Plant thermal design point power, Ppp 300 MWy, (3]
Design point field efficiency, ngie1q 0.451/0.652 [3]
Receiver thermal efficiency, Nyec 0.613/0.9 [3]
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Base Case Parameters (2)

___ lparameter __________________________Value __________Unit ______[Ref _

Thermal Hourly losses fraction, fi 10ss 0.01 MW MWh~1d-1 [12]

Energy Charging efficiency, 1, ch 0.99 [12]

Storage Discharging efficiency, nch gis 0.9 [12]
Max charging rate fraction, fi, ch 0.3 MW MWh™1! [12]
Max discharging rate fraction, fi, gis 0.1 MW MWh™?! [12]
Initial state of charge, SOCiyit 0.5 [12]
Minimum state of charge, SOCin 0.05 [12]

AN Work-to-heat efficiency, 7y 0.99

Auxiliary PSA efficiency (CO,-CO), npsa 0.05 [11]
PSA pressure, ppsa 8 bar [11]
Power block cycle efficiency, npg 0.535 [5]
Pump/compressor efficiency, Npump 0.85
Cryogenic air separation energy, Wsep, 15 K] molﬁi [10]
0, selling price, Co, 150 $t1
CST and PV costs 2035 ATB [4]
TES installed cost, Co Tgs 10 $ kWh™1 [12]
Redox reactor cost function SMR reformer, higher f,,,, redox cost [6]
Fixed charge rate, FCR 7.07 % [2]
Total as-spent cost to total overnight cost, TASC/TOC 1.093 [2]
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Results — Annual Simulation

CST CST+TES

Plant Load Fraction
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Results — Annual Simulation

CST+PV CST+PV+Electrical Heaters

CST+PV without electrical heaters has the lowest capacity factor
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Results — Total Costs

“SOA” Receiver
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Results — Receiver Power
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Annual plant production capacity, kt/y

Results — Solid Heat Recovery
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Results — Annual Capacity Factor (CST-TES)
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e High-performance receiver effect outweighs CST+TES benefits

e Sensitivity analysis of CST cost scaling power needed to better understand CST-TES cost relations
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Results — TES Cost (CST-TES)
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Results — Feedstock Price

“Next-Gen” Receiver — CO, “Next-Gen” Receiver — H,0
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Summary

* TEA modeling framework coupled with physics-based system performance

* Levelized cost of fuel <S9/gal (excluding incentives)

* TES improves fuel cost with “SOA” receiver

* High SM needed (~10) to utilize TES, annual CF>0.85 possible

e CST and PV results in the highest cost without energy conversion (generation
mismatch)

Future work:

e Adding start-up/shutdown effects

* Including additional technology options for auxiliaries
e Sensitivity analysis for CST cost function

* Refining cost models

* More detailed TES performance modeling
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The Model

* 1D convection-diffusion with multiple species (reactant, product, O,)

dC; 04 C; dC; do
Eor = Degs 5z Yo + Coxidea
Reduction:
do
= ko(8eq(Treds Co, 8) — 8)H(8eq(Treds Co,) 6) — 6)
Oxidation:

dod

dt = —k, (5eq(Tred; Coy» 5) - 6)H ( 0 — 63Q(Tr3d’ Cop 5))
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The TEA Model

Levelized cost of fuel:

FCR - TCC + FOC — REV Ppy Pcst

Meyel Meyel Meyel
TCC — total capital cost of chemical plant (equal to TASC — total as-spent cost) —

accounting for financing over a period (as opposed to overnight cost):

TCC = TASE TOC
~ TOC

REV - revenues (from selling O,); FOC — fixed operating costs; VOC — variable
operating costs
TOC - total overnight cost (includes capital costs of all components and extras)

M
T0C = ) Cof[(1+ fofim + Gor + for + fit fo+ fo + )]
j=1
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Cycle Process - Reduction

1) Reduction

Qred \ N2+Oz

Length

Reduction enthalpy provided indirectly using HTF and/or excess sweep gas heating (high h)
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Cycle Process - Cooling

1) Reduction N,+0, 2) Cooling Qcool

MOX_6red

\ 4

Length Length

Cooling is performed via the HTF tubes, directly through the reactor (inert HTF), or a combination
Heat could be stored or used for power/heat
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Cycle Process - Cooling

1) Reduction N,+0, 2) Cooling

Length
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Cycle Process - Oxidation

Length

Extracting the exothermic heat is performed via the HTF tubes, by flowing reactant at T < T4, or a
combination
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Cycle Process - Heating

3) Oxidation 4) Heating

MOX_80X

Length Length

Heating is performed via the HTF tubes, directly through the reactor (using HTF), or a combination
Depending on heating rates, reduction could be started during heating
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Cycle Process - Heating

3) Oxidation 4) Heating

Length Length
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Alternative H,-H,O Separation

Mechanical Vapor Recompression (MVR)

* Method used to recover low-grade waste steam in plants
 Compressing the vapor -> creating AT between streams -> simultaneous evaporation and condensing

From oxidation reactor , To oxidation reactor

@) '

H2+H20 g

700 w HzO(I) 7 k

B H,0(g) Make-up
— 92 3 water feed

500] o HZO(I)

400 2 > _— 5

300 H2+H20(g) 4 HZO(Sat)

200 3 Flash Tank

— Hz

0 H,0(g) 6 ~___~

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80

5
s [J/kmol-K] x10° NREL | 40



The Model

Reactor:

* 1D convection-diffusion with multiple species (reactant, product, O,)

 Temperature-swing, sweep gas operated reactors

* |sothermal redox steps (T eq and T, held constant respectively)

* Splitting CO, and H,0 in separate reactors

e Calculating number of reactors needed to obtain continuous syngas production

Auxiliary units:

* Sweep gas purification: PSA, cryogenic separation, thermochemical O, separation

* H,-H,0 separation: condensation, mechanical vapor recompression,
electrochemical membrane separation

* CO-CO, separation: membrane separation, PSA, scrubbing, syngas conditioning

Software: MATLAB, Cantera, CoolProp, COMSOL
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Performance Indicators

Reactor efficiency
Zizproduct niHHVi

B Qsens + Qred + Wpump + VVinert

n

Conversion extent
nox,out

X=1-

nox,in
Power output

Zi=product niHHVi

tcycle

P =

Power density / specific power
P P
—— Or
I/PB Moxide
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Results — Temperature Effects
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